TeslaSCADA2
Quickstart Tutorial
Table of Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quickstart tutorial</td>
<td>3</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>3</td>
</tr>
<tr>
<td>Create a New Project</td>
<td>4</td>
</tr>
<tr>
<td>Create a New Server (I/O Device)</td>
<td>5</td>
</tr>
<tr>
<td>Modbus</td>
<td>5</td>
</tr>
<tr>
<td>Siemens</td>
<td>6</td>
</tr>
<tr>
<td>Allen Bradley (Control Logix or Compact Logix)</td>
<td>6</td>
</tr>
<tr>
<td>Allen Bradley (Micrologix or SLC)</td>
<td>6</td>
</tr>
<tr>
<td>OPC UA</td>
<td>7</td>
</tr>
<tr>
<td>MQTT</td>
<td>7</td>
</tr>
<tr>
<td>Omron</td>
<td>8</td>
</tr>
<tr>
<td>Create a New Tag</td>
<td>9</td>
</tr>
<tr>
<td>Modbus</td>
<td>10</td>
</tr>
<tr>
<td>Siemens</td>
<td>10</td>
</tr>
<tr>
<td>Allen Bradley (Control Logix or Compact Logix)</td>
<td>10</td>
</tr>
<tr>
<td>Allen Bradley (Micrologix or SLC)</td>
<td>11</td>
</tr>
<tr>
<td>OPC UA</td>
<td>11</td>
</tr>
<tr>
<td>MQTT</td>
<td>11</td>
</tr>
<tr>
<td>Omron</td>
<td>11</td>
</tr>
<tr>
<td>Create a New Graphical Object</td>
<td>13</td>
</tr>
<tr>
<td>Run Simulation</td>
<td>16</td>
</tr>
<tr>
<td>Setup Events</td>
<td>19</td>
</tr>
<tr>
<td>Setup History</td>
<td>23</td>
</tr>
<tr>
<td>Setup Scaling</td>
<td>27</td>
</tr>
<tr>
<td>Run Project in TeslaSCADA2 Runtime</td>
<td>28</td>
</tr>
</tbody>
</table>
Quickstart tutorial

Welcome, and thank you for downloading TeslaSCADA2. We would like your experience with the product to be a pleasant one, so we have created this tutorial to help new users get familiar with some of the fundamental features of the product.

This tutorial assumes that you have already successfully installed the TeslaSCADA2 IDE and TeslaSCADA2 Runtime products on your computer. You do not require any license to complete this tutorial.

Repetition is an important part of learning or memorizing. One way you can speed up your familiarization is to take a few minutes to click through all the menus in the product and (briefly) try and figure out what each item might be for, if you can’t make sense of something, don’t be concerned just move on to the next one anyway. You may not consciously remember everything you see, but it helps to set a framework for when you revisit these items in the tutorial and in this way you will remember them much better.

Definition of Terms

Click = Briefly press left mouse button

Double Click = Press left mouse button twice – quickly

Right Click = Briefly press right mouse button

Check = A tick or cross in an options box

Type Text = Type in the word Text

Drag = Position mouse, click and hold left mouse button, move mouse, then release mouse button.

TeslaSCADA2 consists of two parts - TeslaSCADA2 IDE for creating project and TeslaSCADA2 Runtime for running your project and communicating with devices and servers.
Create a New Project

Run TeslaSCADA_IDE. On the Tool Bar, **click** on the **New Project** icon.

In the **Create Project Dialog Box**, type **Tutorial** in the **Name field** to give the new project a name, give it a description, then **click OK**.
Create a New Server (I/O Device)

To create New Server click on the Servers tab and Right click on the server pane.

Modbus

Context menu will be appear. Choose New Server and click Modbus.

In the Server properties Dialog Box, type DemoPLC in the Name field to give the new server (your device) a name, in the IP or DNS type IP address of your device, then click OK.
Siemens

Context menu will be appear. Choose **New Server** and click Siemens.

In the **Server properties Dialog Box**, type **DemoPLC** in the **Name field** to give the new server (your device) a name, in the **IP or DNS** type **IP address** of your device, then click **OK**.

Allen Bradley (Control Logix or Compact Logix)

Context menu will be appear. Choose **New Server** and click Allen Bradley.

In the **Server properties Dialog Box**, type **DemoPLC** in the **Name field** to give the new server (your device) a name, in the **IP or DNS** type **IP address** of your device, choose **Control Logix** or **Compact Logix** in **Controller type** then click **OK**.

Allen Bradley (Micrologix or SLC)

Context menu will be appear. Choose **New Server** and click Allen Bradley.

In the **Server properties Dialog Box**, type **DemoPLC** in the **Name field** to give the new server (your device) a name, in the **IP or DNS** type **IP address** of your device, choose **Micrologix** or **SLC** in **Controller type** then click **OK**.
OPC UA

Context menu will be appear. Choose **New Server** and click **OPC UA**.

In the **Server properties Dialog Box**, type **DemoServer** in the **Name field** to give the new server (your device) a name, in the **URI** type **URI address** of your server, then **click OK**.

MQTT

Context menu will be appear. Choose **New Server** and click **MQTT**.

In the **Server properties Dialog Box**, type **DemoServer** in the **Name field** to give the new server (your device) a name, in the **URI** type **URI address** of your server, then **click OK**.
Context menu will be appear. Choose **New Server** and click **Omron**.

In the **Server properties Dialog Box**, type **DemoPLC** in the **Name field** to give the new server (your device) a name, in the **IP or DNS** type **IP address** of your device, then click **OK**.

Your server will be appear on the **Servers** pane.
Create a New Tag

To create New Tag click on the Tag tab and Right click on the tag pane.

Context menu will be appear. Click New Tag.

In the Tag properties Dialog Box, type TestTag in the Name field to give the new tag a name, in the Data type choose Short(16 bit), in the PV input server combobox choose DemoPLC. Then click “…” button.
Modbus

Pointer settings will be appear. Left all default parameters and then click OK.

Siemens

Pointer settings will be appear. Choose M Storage area, Int Data type and then click OK.

Allen Bradley (Control Logix or Compact Logix)

Pointer settings will be appear. Enter Short (name of your tag) in the Tag name field, choose SINT Data type and then click OK.
Allen Bradley (Micrologix or SLC)

Pointer settings will be appear. Choose *Integer* in the *File type* and then click *OK*.

OPC UA

Address Space will appear. Browse address space, choose *Node* you want to bind this tag, *Right click* on in it and click *Select*.

MQTT

Pointer settings will be appear. Enter *Short* (name of the server’s topic) in the *Topic* and then click *OK*.

Omron

Pointer settings will be appear. Choose *Unsigned Integer (16bit)* in the *Data type* and then click *OK*.
In the **PV input tag** field of the **Tag properties** dialog symbol of the pointer will be appear. Then click **OK**.

Your tag will be appear on the **Tags pane**.
Create a New Graphical Object

To create a New Graphical object on the Tool Bar, click on the New Object icon.

In the Add graphical object dialog box, click 3D Objects in Collections, click Text/EditField 3D object and then click OK.

On the field for designing Screen (Window) you’ll see a cross. Move this cross where you want and click. On the Screen you can see a graphical object Text/EditField 3D and squares for resizing graphical object. You can Drag and Drop these squares for resizing object.

Double click on the graphical object for Edit properties of it.
In the **Object properties** dialog box choose **General** tab and type **TestTagValue** in the **Name** field and **Value** in the **Text field**.

Then click on the **Text Input** tab.

On the **Text Input** tab check **Enable property**. Choose **TestTag** in the **Tag** ComboBox. Choose **Tag.PV** in the **Type**.

Now our graphical object can display current tag’s value.

Then click **Output value** tab.

On the **Output value** tab check **Enable property**. Choose **TestTag** in the **Tag** ComboBox. **Type** **Enter TestTag**.

Now you can use the graphical object for entering value in the **TestTag**.
Then click **Text color** tab.

On the **Text color** tab check **Enable property**. Choose **TestTag**, **Type 90** in the **Value** field and Choose **Tag.PV>=Value** in the **Type ComboBox**.

Now if the value of **TestTag** >= 90 color of the text will be **Red**. If <90 color of the text will be **Green**.

And then you can click **OK** to finish setup graphical objects properties.

Now you can see changed graphical object on the Screen.
Run Simulation

Simulation mode needs to test your project **without connection to real device**. On the Tool Bar, click on the Run simulation icon.

After starting simulation mode you’ll see the RUN indicator in the lower right corner. Graphical object since we set up Text Input property displays default value 0. To change tag’s value **Double click** on the TestTag (we bound this tag to Text Input property) on the Tags pane.
Value dialog will appear. You can change Tag’s value by typing it in the EditBox and then click OK.

It is also possible to simulate a sequential change in the tag’s value from 0 to 100. To do this you should Right Click on the TestTag and choose Simulate->Ramp menu item.

To stop the automatic change of the value of the tag you should Right Click on the TestTag and choose Simulate->Cancel menu item.
To test **Output Value** property of the object click on it. **Enter TestTag** dialog box will appear.

In the **Enter TestTag** dialog box type value (in our example 76) and then click **OK**.

To stop **Simulation mode** on the Tool Bar, click **Stop simulation** icon.
Setup Events

To understand how to work with Events in TeslaSCADA2 first of all let's open project Properties. To do this on the Tool Bar, click on the Properties icon.

In the Edit Project Dialog Box, open Events/History tab by clicking on it, type events in the Events DB name field. This is the name of the SQL Lite database (it's stored in the folder where installed TeslaSCADA packet or if this is not possible in the folder where your project saved). Type 100 in the Notifications (priority<) field (if priority of the event you setup below this value the notification dialog box appear), then click OK.

Now let's open TestTag properties by Double clicking on it.
In the Tag properties Dialog Box, open Alarms tab by clicking on it. Check on Enable Alarms, HiHi, Hi, Lo, LoLo and Normal checkboxes. Fill up all Edit boxes like it’s shown in the Picture. Then click OK.

Now we have to setup graphical object for display Events/Alarms in our project. To do this Right click on the Screen and choose New Object menu item.

In the Add graphical object dialog box select Events library by clicking and select Events log by double clicking.
Choose place where you want to place **Events log** by clicking and table will appear on the **Screen**. You can resize it if you want.

Now let’s **Run simulation** as we did in previous chapter. Since the tag’s value is greater than 70, the first event appears in the table (you can change color in the **Event Log** settings). To change tag’s value click on Text graphical object.

In the **Enter TestTag** dialog box **Type 95** and then click **OK**.

Alert message **TestTag is over 90** will appear and new row will be added in the **Events log**. Click **OK** on the Alert message dialog box.
To acknowledge all Events in the table Right click on it and choose Acknowledge All menu item.

Color of the background of all rows will be changed. And then Stop simulation, by clicking icon on the Tool Bar.
Setup History

To understand how to work with **History** in TeslaSCADA2 first of all lets open project **Properties**. To do this on the Tool Bar, click on the **Properties** icon.

In the Edit Project Dialog Box, open **Events/History** tab by clicking on it, type **history** in the **History DB name field**. This is the name of the SQL Lite database (it’s stored in the folder where installed TeslaSCADA packet or if this is not possible in the folder where your project saved). Then click OK.

Now let’s open TestTag properties by Double clicking on it.
In the Tag properties Dialog Box, open History tab by clicking on it. Check on Enable History, Type 1000 in the Save period(ms) field, check on Store in DB like it’s shown in the Picture. Then click OK.

Now we have to setup graphical object for display History in our project. To do this Right click on the Screen and choose New Object menu item.

In the Add graphical object dialog box select Trend and charts library by clicking and select Trend DB by clicking on it. Then click OK.
Choose place where you want to place **Trend DB** by clicking and chart will appear on the **Screen**. You can move and resize it if you want.

To edit Trend properties **Double click** on the object. In the **Object properties** dialog box click **Collection**.

In the **Collection** dialog box Choose **TestTag** in Tag field, Choose **Red** color in the **Color** field, click **Add** and then click **Close**.

Click **OK** in the **Object properties** dialog.
Run simulation mode like we did in one of previous chapter. And Right Click on TestTag and choose Simulate->Ramp menu item. Wait some time. You’ll see new events will appear in the Events table. Then again Right Click on TestTag and choose Simulate->Cancel. Then click on the Trend DB object.

In the Select the start and end time dialog box choose period you need to watch. Then click OK.

You’ll see some history information on the Trend. You can make some manual simulation of TestTag by changing value of it and refresh Trend’s information by changing time period. Then you click Stop simulate to end your history testing.
Setup Scaling

To understand how to setup scaling let’s suppose that our TestTag bind to the for example Holding Register of our Modbus PLC and 1000 raw value of the register is equal to 100 engineer units value. Now let’s setup this possibility in TeslaSCADA IDE.

To do this open TestTag by double clicking on it.

In the Tag properties dialog box open Scaling tab by clicking on it. Type 1000 in the Raw value maximum text field. Other text fields left unchangeable. Then click OK.

Now we are ready to interact with the real device. To do this we should run TeslaSCADA2 Runtime.
Run Project in TeslaSCADA2 Runtime

Run TeslaSCADA_Runtime. You’ll see your project automatically loaded in TeslaSCADA2 Runtime. If not On the Tool Bar, click on the Open… icon.

Then you can Run your project by clicking on the Run icon.

You can see values from your Modbus PLC. To change value of the tag click on it. In the Enter TestTag dialog box type value 95. Then click OK.

Because we set up Alarms in our TestTag we see Alarm message and in the Event Log new row is added.

Because we set up Scaling in our project raw value in PLC register is other then we entered. In our case entered value 95 is saved in Holding Register of Modbus PLC as 950.
To check **History** settings of the **TestTag** click on the **Trend DB** and choose time period, then click **OK**.

You’ll see results of your settings on the **Trend DB**. Click **Stop icon** on the **Tool Bar** to stop running of your project.

Congratulations! By now you should have a basic working knowledge of TeslaSCADA software.