TeslaSCADA OPC UA Server
User Manual

Version 1.3

Table of Content

About TeSIaSCADA OPC UA SEIVENcoiiiiiiiiieee ettt 5
ReqQUIrEMENTS e e e e e 5
LA e [0 1 SRR 5

1Y = Lo 1 TSRS 5
0 T 5

1 1Sy 7= F= Ao o TP PPRPPRRR 6
WWINAOWS ...ttt ettt ettt ettt e et e e et e et et e et e e e e e e e e e e e e e aaeaaaaaaaaaaaaaaaaaaaaaaaans 6

Y= T 1 PP 6
0) 6
Start TeSIaSCADA OPC UA SEIVEToiiiiiiiiieiee et 7
PROJECT. .. e e e e e e e e e e e e 9
Create PrOJECT ...t e e e e 9
=YL= o] o] [T o PSR 11
(@0 7=T o T o] o] [T o (5 11

Edit project Properti€s.oouueieieieii e 11
T2 = 12
CrEALE SEBIVENttt e e e ee e e e e eeeeeeeeeeeeeeeeeeeeeeeaeeeaeeaaaaees 12
MOABUS RTU SEIVEN ... 12
1Yo | oW ESJE=T =T o V=T P 13
SIBMEBNS SEIVET ...ttt ettt r e e e e e e e e e e e e e e e eeeeennsnnnnnas 13

Allen Bradl@y SEIVENoeeiiiiiiiiieee et 14

OPC UA SEIVET ...ttt e e et e e e e e e aaaaaeaeeeeeaaans 14

L I I =Y Y 14

(@0 01 (0] TEST=T T P PPPRRRPRRPRPPR 15

OPEN SEIVEI PrOPEITIES...cciiueeeeeeeeiieie ettt ettt ettt e st e e e e e e enne e e e e annneeas 16
(O70] o) =T=T V=T PP PP PP OOPPPPPP 16
D= =) (I ST =T = PRSPPI 16
RT3] o £ TSP 17
L@ (==Y LYKo o) PR 17

(@] oT=T g IKTor ¢ o) PP PPPPP R 17
(O70] o) A=Tol o) ST PPT R OTPPPPPI 17
Delete SCHPT oo, 17

o [et] o1 o] fo] 01T ¢ [T PP 17

N [T g o 0 {011 o 17

FaYe (o I (o T [(o101 o TP PRETTP S PPPPI 17

(oY) o B =Te1 ¢ o PR PPPPPPRRPPPR 17

= 1o 1= PP PP PPPPPP PPN 18
(O (T 1 (= 7o PRSPPI 18
Modbus tag SettingSceeeiiiiii e 18
Siemens tag SEttNGSueeiiiiiii 19
AllenBradley tag SEttingsuuueiiiiiiiiiiiiiiie 19
Micrologix tag SEtHNGSveviiiiiiiieiee e 19
OPC UAag SEtNGS ..ottt 20
MQTT tag SEHINGS ... 20
OMron tag SEHiNGS......coiiuiiiiiie e 20
(070] o)V =T PSP POUPPPN 22
D=1 (= =T SO PPPPPPRRRPPR 22
Delete All TGS ... eeeeeieei i 22
St @AItaDIE ... s 22
Edit tag Propertieseeeiiiiieeeiee e 22
N T o TU o = To 1< PP PPI 22
FaXe (o I (o T [(o TU] o PSPPSR PPPPI 22
REfErENCE 10eieieii e 22
EXPOIt Al 18GS ... eeeeeeeeiieee e 22
EXport tags for OPC UA ...ttt e 22
IMPOIT TAGS ... 23
EXPOrt tags t0 EXCElooviiii 23
IMport tags from EXCElcooiiiii e 23
DESIgN SCIIPL .. e e e e e e e e e e e 24
Create SCrPt ODJECT ... 24
CoNNECE SCIIPL ODJECTS ... 24
Bind script object t0 the tag........occuviiiiii 24
Enter value to the value script ObjJect ... 24
[D]U] o] ez= 1 (= IX=Te7] o o] o] =T o] A0SR 24
Erase SCHPt ODJECT. ..o 24
Erase coNNECHION lINE ... 24
Script objects of FBD 1anguagecouviiiiiiiiiiieeiiieieeee e 25
INPUL/OULPUL TIDFAIY ... e e e e an 25
[oTo (7= I 11 o] =1 o VO PPPEREPRPPPN 25
Bitmap operations [Drary............coo e 25
ArtNMETIC IDFArY 25
COMPAIE lIDFAIY ...t 26

L= [=To i [o] = V2P PPRP 26

AITAYS TIDTAIY ..o a e 26

Triggers/CoUNtErs [IDFarycooi i 26
TrgONOMETHIC IDFAIY ... 27
HexX 0perations lIDraryeeeieeiiii e 27
Call SCIEEN IDFANY.....ceiiiiieiee e e e e e e 27
SHNGS IDFANY ... 27
Date and time IDrary ... 27
SEIVEIS IDFAIY ...t e e e e e e e 28
RECIPES [IDFAIY ... e e e e 28
BASE64 lIDFaryooooiiii e 28
Description of ST(Structured text) language...........cccccuviviiiiiiiiiiiiieeeeeeeees 29
What is Structured Text Programming?...........coooiuiiiiiiiiieeiiiee e 29
Starting with the Syntax of Structured Text ... 29
COMMENT SYNTAX.....eeiieiiiiie e e s s e e e e nnes 30
Making Statements with Structured Text ..., 30
Types iN STrUCtUred TeXE.....oooiii s 31
Operators and EXpressions in STLcoooiiiiiiiiiiieeeee e 32
(@] 01=T = 1 (o] £ PR 33
4 Types of Operators, 4 Types Of EXPreSSioNS........ccevvveicieiiiiieeeeiiciieeeeee e 34
Arithmetic OPEeratorsoouiiiiiee e 34
Relational Operators ... 34
LOGICaAl OPEIratOrsS.ccoiiiiiiiiieie ettt e e 35
BitWiSe OPErators........cooii ittt 35
Operators and StatemMentscooiiiiiiiii e 36
Assignment Statement and Operator............ccccoviiiiiiieiiiiiiie e, 36
Conditional Statements.........c.eeeiiiiiii 37

IF Statements. .. .o 37
Boolean and Numeric EXpressions..........ccooiiiiiiiiiiiiiiine e 37
Iteration with Repeating LOOPS......ueiiiiiiiiiiiiiieeiieeeeeeeeeeeeee e 39
@2 B o To] o < TR 39
WHILE LOOPS ..ttt 39
User-defined fUNCHONS ..o 41
Using Tags in Structured TeXt.........oooi i 41
Using Object property fields in Structured Textcccooiiiiiiiiiiiii e 41
Using Server parameter fields in Structured Text..........ccooviieeeeieiiiiciiiee e, 42
Using User parameter fields in Structured Text.........ccccoviiiiiiiiiiiiiiie e 42
Embedded fUNCLIONS........cc.uiii e 42

Use Telegram Bot..... ..o e 46

About TeslaSCADA OPC UA Server

TeslaSCADA OPC UA Server is an environment used for configuring, developing and managing

OPC UA Server. In this manual you will find everything you need to create an OPC UA Server. A
simple to use interface allows for easy manipulation of the project’s configuration and data
processing. The project data are stored in a single file (based on xml) for easy backup and

restoration.

Requirements
TeslaSCADA OPC UA Server requires Windows, Mac OS or Linux operating systems.

Windows
Processors: Intel Pentium 4, Intel Centrino, Intel Xeon, or Intel Core Duo (or compatible) 1.8 GHz

minimum.

Operating systems: Windows 8 (Modern Ul (i.e. Metro Mode) is not supported), Windows 7,
Windows Vista, Windows XP (not recommended but supported).

Memory: 512MB of RAM (1 GB recommended).

Disc Space: 256MB of free disc space.

Mac OS

Processors: Dual-Core Intel, PowerPC G5
Operating systems: 10.7.3 or greater
Memory: 512MB of RAM (1 GB recommended).

Disc Space: 256MB of free disc space.

Linux
Processors: Intel Pentium 4, Intel Centrino, Intel Xeon, or Intel Core Duo (or compatible) 1.8 GHz

minimum.

Operating systems: Ubuntu 10.4 + gtk2 2.18+
Memory: 512MB of RAM (1 GB recommended).
Disc Space: 256MB of free disc space.

Media: You must install the following in order to support AAC audio, MP3 audio, H.264 video, and
HTTP Live Streaming:

libavcodec52 and libavformat52 on Ubuntu Linux 10.04, 10.10, 11.04 or equivalent.

libavcodec53 and libavformat53 on Ubuntu Linux 11.10, 12.04 or equivalent.

Installation

Windows
To install TeslaSCADA OPC UA Server download EXE package for your operating system. Run

installation file and go through installation procedure.

Mac OS
To install TeslaSCADA OPC UA Server download DMG package for your operating system. DMG

package provides a simple possibility to install application by double clicking on it.

Linux
To install TeslaSCADA OPC UA Server download RPM package for your operating system. By

default RPM package will install the application to /opt, add a shortcut to the application menu.

RPM package does not have any UI for installation (normal behavior for Linux)

Start TeslaSCADA OPC UA Server

After opening the application you will see the start screen. Look at the picture below to briefly get
to know the TeslaSCADA OPC UA Server interface:

e0e L4 TeslaSCADA OPC UA Server
File Project Language Settings Help
—
wEI=IE =

Project: videotestopcuaclient

Name Value
> Servers:

Status Time PV Input ser
» Tags

» Scripts

No contentintable

/Users/ruslan/Documents/werkspace/TeslaSCADA2_IDE/Prcjects/videoopcuatestclient.tsp2

Main menu

File - manipulation with project files.

Project - possibility to create new objects of the project - Server, Tag and Scripts. Also

possibility to setup project properties.

Settings - possibility to make some settings in visualisation and activate a license.

Language - possibility to change language of the interface.

Help - opens the help menu

Toolbar
The toolbar consists of the following functions:

New project — creates a new project.

5

Open project — opens an existing project.
Save — saves your project.
Save as — saves your project with a new name.

Properties — properties of your project.

O[] EELE

Run simulation — start simulation of your project.

Q) Stop simulation — stop simulation of your project.

Project window

Project window contains all the information about the project and consists:
Scripts - contains all scripts of the project.
Servers - contains all servers of the project.

Tags - contains all tags of the project.

Status bar

Status bar contains information about path of the current project and information about run or not

project.

Canvas

Place for the design FBD script or type ST script.

Project

Create project
To create a new project TeslaSCADA OPC UA must be started.
1. Click on the New icon in the toolbar or use the command New from the
main menu File. You’ll see the following window:
1 [] Edit Project
General | Events/Histcry OPC UA | MQTT Publisher
Project name: IFTTTandothers

Author: Administrator

Use preject protecticn
Save tags values

Max request attempts: 3

Description:

OK Cancel

2. On the General tab:
2.1. In the Project name enter the name of the project.
2.2. In the Author write the author of the project if you want.
2.3. Optionally, specify a meaningful Description yet.

2.4.If you want to protect your project from opening by non-authorised person

check Use project protection.

2.5. Enter Password for protecting your project.

2.6. Check Save tags values if you want to save tag’s value when you close

application and load them when you open project.

2.7. Enter Save DB name where tag’s values will be saved.

2.8. Enter Max requests attempts for all servers before “Connection lost” message.

3. On the Events/History tab:

3.1. Select the time period during which data will be stored in databases in the

Storage DB period combobox.

3.2. Enter databases names in the Events DB name and History DB name. If you
choose the simple names like events or history application will create SQLite database in the
application directory. If you choose names beginning with jdbc:mysql: like
Jjdbc:mysql://192.168.0.104:3306/test the application will connect to MySQL database and create
events or history table. Don’t create big MySQL databases for connecting from Android devices
(MySQL databases need a wide network bandwidth for sending and receiving data).

3.3. Enter Username and Password if you use MySQL database.

3.4. Enter Notifications(Priority<). Events with a priority lower than this will be
notified about it by using the pop-up window and sound.

3.5.If you check Show servers events you’ll get information about disconnection,
lost or restore servers.

3.6. If you want to use Telegram bot in your project check Use Telegram Bot.

For more information about using telegram bot in your project see the chapter below.

3.9. Enter Bot’s name. You get Telegram Bot’s name from BotFather when you creating your bot.
3.10. Enter Bot’s token. You get Telegram Bot’s token from BotFather when you creating your bot.

3.11. Check Use E-mail client if you want to use E-mail notifications about Alarms. All event
messages that have priority < Notifications(Priority<) will be sent by E-mail.

3.12. Enter E-mail Host.

3.13. Enter E-mail Port.

3.14. Choose Type of the connection - TLS or SSL.

3.15. Enter From which E-mail address the mail will be sent.
3.16. Check Authentication if you use Username and Password.
3.17. Enter Username of the E-mail.

3.18. Enter Password of the E-mail.

3.19. Enter To which E-mail addresses the mail will be sent. Use commas to separate addresses.

4. If you use OPC UA client certificate to connect to ° s

General | Events/History | OPC UA | MQTT Publisher

OPC UA servers in your project on the OPC UA tab enter OPC UA clent certficate ;
Name of used/created certificate and Period(days) of validation ™ . 5
if you create certificate. The certificate stored in the {app}/) Use OPC UA server |

rivate director bt e :
p y' v/| Use Anonymous policy

v/| Use Username/Password policy

If you want to enable OPC UA server of TeslaSCADA?2 check . opevacertiicatename
Use OPC UA server. it 3650

4 3. Enter TCP port of your OPC UA server.

4.4. Check Use Anonymous policy if you want to use this
policy in OPC UA server.

4.5. Check Use Username/Password policy if you want to use
this policy in OPC UA server.

4.6. Enter Certificate name of your OPC UA server.

OK Cancel

4.7. Enter validation Period (days) of the certificate.
10

5.1f you want to use MQTT Publisher check Enable MQTT Publisher.

5.1. Enter Broker URL of the MQTT server.

5.2. Enter Username and Password of the MQTT server.

5.3. Choose QoS of MQTT messages.

5.4. Check Enable TLS/SSL if you want to use server certificate for encryption messages.

5.5. Enter Certificate filename. File should be placed in /private/ folder in the directory where
TeslaSCADA?2 OPC UA Server execution file.

5.6. Check Enable Client Certificate if you want to use client certificate for encryption messages.
5.7. Enter Client certificate filename. File also should be placed in /private/ folder.

5.8. Enter Client Private key filename. File also should be placed in /private/ folder.

5.9. Enter Private key password.

5.10. Check PEM formatted if your certificate and key files are PEM formatted.

Publisher’s topics are consists of the «name of the project +/Tags/+tagname» for tags and «name of
the project+/Events/+tagname» for events.

Save project
To save project:

1. Click on the Save icon in the toolbar or select the menu item File and Save. The first time
you save a new project, you will be asked for a location.

2. Now select the location and click the button Save (TeslaSCADA OPC UA Server
extension .tsp2).
Open project
To open project:

1. Click on the Open icon in the toolbar or select the menu item File and Open.

2. Now select the project and click Open (TeslaSCADA project extension .tsp2).
Edit project properties
To edit project properties:

1. Click on the Properties icon in the toolbar or select the menu item Project and
Properties.

11

Servers

Create server [P P

To create a new server select the menu item

New Screen W

New Script s

Project and New Server or choose Servers on the o -

Project Window, click right button on it and
choose New Server item. Choose server you want

U

o

simulaticn AFN

to add to your project.

Modbus RTU server

To create a new Modbus RTU server select the menu item
Modbus RTU. You’ll see the following window:

1.
2.

In the Name enter the name of the Modbus RTU server.
Choose Port ID (portid). If this port won’t be able to
open in TeslaSCADA?2 Runtime other port will be tried to
find and open.

Enter Modbus RTU Baud rate (baudrate).

Choose Flow control of the port. (flowcontrol). It can be
NONE, RTSCTS and XONXOF .

Choose number of Data bits (databits). It can be 5,6, 7
and 8.

Newsener ST

Ccpy Server

BTN o0 ~or | paere server

Medbus TCP(UDP) ~&M

Siemens ~os Server properties

Allen Bradley ~OA

*| opcUA ~c0

[Verns ~eQ
Omron ~oN

| @

‘Name:

Port ID:

Baud rate:
Flow control:
Data bits:
Stop bits:
Parity:
Request type:
Poll interval:

Without function 6:

Choose number of Stop bits (stopbits). It can be 1, 1.5 and 2.

Choose Parity (parity). It can be NONE, EVEN, ODD, MARK and SPACE.

Choose Request type (requesttype):

- Maximum registers - if you choose this type the application during polling will send

maximum modbus pointers in 1 polling request.
- Consecutive registers - if you choose this type the application during polling will send only

consecutive modbus pointers in 1 polling request.

Siemens

OPC UA
MQTT

Omron

Server properties

Mcdbus TCP(UDP)

Allen Bradley

AR
ANOM
ANGS
ANGA
~40
~eQ
~EN

|

COM1

9600

NONE

8

1

NONE

Maximum registers

1000

OK

Cancel

- I pointer registers - if you choose this type the application during polling will send only

registers used by 1 pointer in 1 polling request.
9. Check Without function 6 if your controller doesn’t support Modbus writing function 6

(withoutfun).

12

MOdbUS server [] Server properties

To create a new Modbus server select the menu item Modbus. r::st: |
You'’ll see the following window: Port: 502
1. In the Name enter the name of the Modbus server. Rollinterval: 1000
2. Write IP address or DNS in the IP or DNS field e e ’
Request type: Maximum registers -
(ipaddress). RTU via TCP(UDP):
3. Enter Modbus server port in the Port (port). Without function 6:

Define the polling interval of the server in the Poll
interval field (interval).

OK Cancel

5. Choose communication protocol in the Type (type).
6. Choose Request type (requesttype):

- Maximum registers - if you choose this type the application during polling will send
maximum modbus pointers in 1 polling request.

- Consecutive registers - if you choose this type the application during polling will send only
consecutive modbus pointers in 1 polling request.

- I pointer registers - if you choose this type the application during polling will send only
registers used by 1 pointer in 1 polling request.
7. Check RTU via TCP(UDP) if you user Modbus converter from serial into TCP(UDP)
protocol (rtuviatcp).
8. Check Without function 6 if your controller doesn’t support Modbus writing function 6
(withoutfun).
Siemens server
To create a new Siemens server select the menu item Siemens. You’ll see the following window:
1. In the Name enter the name of the Siemens server.

2. Write IP address or DNS in the IP or DNS field o R r—
(ipaddress). IP or DNS: 192.168.0.101
3. Enter Siemens server port in the Port (por?). e 102
Define the polling interval of the server in the Poll [Poltintervat 1099
interval field (interval). E::I:Le:y::e :ﬂ::::m — :
5. Choose type of the Siemens PLC in the Controller lRack: 0
type (plctype). ot 0
6. Choose Request type (requesttype): ‘
OK Cancel

- Maximum registers - if you choose this type the
application during polling will send maximum siemens
pointers in 1 polling request.

- I pointer registers - if you choose this type the application during polling will send only
registers used by 1 pointer in 1 polling request.

7. Enter rack number in the Rack field (rack).
8. Enter slot number in the Slot field (slot).

13

Allen Bradley server

To create a new Allen Bradley server select the menu N:me: sTr“es
item Allen Bradley. You’ll see the following window: 102.188.0.101
1. In the Name enter the name of the Allen Bradley PP
SCIVer. Poll interval: 1000
2. Write IP address or DNS in the IP or DNS field Controller type: User-defined
(ipaddress). CPU slot: 0
3. Enter Allen Bradley server port in the Port Ethernet slot: 1
(port).
4. Define the polling interval of the server in the
Poll interval field (interval). oK Cancel

5. Choose type of the Allen Bradley PLC in the
Controller type (plctype).

6. Enter PLC’s cpu slot number in the CPU slot field (cpuslot).

7. Enter PLC’s backplane number in the Backplane field (ethernetslot).

OPC UA server

To create a new OPC UA server select the menu item e Server properties
OPC UA. You'll see the following window: Nama |
1. Inthe Name enter the name of the OPC UA S OpCICDilFi92.163.0- 2454
Poll interval: 1000
server.
Mode: None
2. Write OPC UA server address in the URI field _— .
(uri). v/| Anonymous
3. Define the polling interval of the server in the Poll .
interval field (interval). Password:
4. Choose security mode in the Mode (mode).
5. Choose security policy in the Policy (policy). oK Cancel
6. Check Anonymous if you don’t use User token
(anonymous).
7. Enter Username and Password into relevant fields if you use User token (username and
password).
MQTT server

To create a new MQTT server select the menu item MQTT. You’ll see the following window:

1. In the Name enter the name of the MQTT server.

2. Write MQTT server address in the URI field (uri).

3. Enter Username and Password into relevant fields (username and password).

4. Check Enable TLS/SSL if you want to use server certificate for encryption messages
(enablessl).

5. Enter Certificate filename. File should be placed in /private/ folder in the directory where
TeslaSCADAZ2 Runtime execution file (sslfilename).

6. Check Enable Client Certificate if you want to use client certificate for encryption messages
(enableclientcert).

7. Enter Client certificate*® filename. File also should be

placed in /private/ folder (clientcertname). - Selerproperties

Name: MQTTServer1
8. Enter Client Private key* filename. File also should be URI: 551://192.168.0.105:8883
placed in /private/ folder (clientprivatekey). Username: test

Password: test

9. Enter Private key password* (privatekeypassword).

v/| Enable TLS/SSL

10. Check PEM formatted* if your certificate and key files Protocor TLSVI

are PEM formatted (pem).

Certificate filename: m2maqtt_srv.crt

V| Enable Client Certificate

Client Certificate: client.p12

* If you use this project for iOS (iPhone or iPad) you should ciient private key: ~ clientz.xey
use .p12 format for the file of the certificate. To create .p12 Private key Password: | password

file you should in openssl utility use this type of
command:

openssl pkes12 -export -out [your file name].p12 -in
[your file name].crt -inkey [your file name].key

For example:

PEM Formatted

OK

openssl pkes12 -export -out client.p12 -in client.crt -inkey client.key

Cancel

The name of your .p12 you should place in the Client certificate field (client.p12 in our example).

Client Private Key you can left empty. In the Private key password you should enter password of
the .p12 file. PEM formatted you can left uncheck. All .p12 files are PEM formatted.

Omron server
To create a new Omron server select the menu item

Omron. You’ll see the following window:

1. In the Name enter the name of the Omron server.

2. Write IP address or DNS in the IP or DNS field
(ipaddress).

3. Enter Omron server port in the Port (port).
Define the polling interval of the server in the Poll
interval field (interval).

5. Choose communication protocol in the Type
(type).

6. Enter Network address (DNA) (dna).

7. Enter Node address (DA1). For TCP protocol it

[J Server properties
Name: |
IP or DNS: 192.168.0.111
Port: 9600
Poll interval: 1000
Type: TCP

Network address(DNA): 0
Node address(DA1): 1

Unit number(DA2): 0

OK

Cancel

will be chosen automatically during communication (dal).

8. Enter Unit number (DA2) (da2).

15

Open server properties
To open server properties:
1. Double click on the server properties which you want to open.
or
2. Right click on the server properties which you want to open and choose Server properties

item.
Copy server
To copy server:
1. Right click on the server you want to copy and choose Copy server item.
Delete server
To delete server:
1. Right click on the server you want to delete and choose Delete server item.

16

Scripts

Create script
p m Language ¥ Scripts

v

v

v

600

To create a new script select the menu item Project and New TS Name =
Script or choose Scripts on the Project Window, click right ' - B 22:;:?;% A
button on it and choose New Script item. Newrag T || SSDW
N I L
You’ll see the following window: Run simulation <F11 Scrpt properes
1. In the Name enter the name of the screen. Properties ~P oo
2. Optionally, specify a meaningful Comment. s
3. Choose Background color. [[
| @ Script properties
4. Select Script type: General or Screen. General script bind roup:
to the whole project. Screen script bind to the Screen. Subgroup:
5. Choose Language you use in this script. = Serett
6. Enter Dimension of the script’s design screen. z::(:::nd oo —
Open script Script type: Genera
To open SCI‘ipt: Language: FBD(Function block diagrams)
1. Right click on the script you want to open and choose ™" 800 | X
OK Cancel

Open script item. {
or
2. Double click on the script you want to open.
Copy script
To copy script:
1. Right click on the script you want to copy and choose Copy script item.
Delete script
To delete script:
1. Right click on the script you want to delete and choose Delete script item.
Edit script properties
To edit script properties:
1. Right click on the script you want to edit and choose Script properties item.

New script group
Create new group of the scripts.

Add to group

Add this script to one of the available group.
Export script
To export script:
1. Right click on the script you want to export and choose Export script item.
2. Now select the location and click the button Save (TeslaSCADA script
extension .tsp2script).
Import script
To import script:
1. Right click on the script window and choose Import script item.

2. Now select the script file and click Open (TeslaSCADA screen extension .tsp2script).

17

Tags

Create tag
To create a new tag select the menu item Project and New Tag

or choose Tags on the Project Window, click right button on

it and choose New Tag item.

You’ll see the following window:

On the General tab:

1. Choose Group of the tag.

2. In the Name enter the name of the tag. The name should be
unique for the project.

3. Choose Data type.

4. If you select String or Array data types enter Number of
elements (letters).

5. If you select String or Array data types choose data type of
1 element (letter).

6. Choose Access mode to the tag: Read, Write or ReadWrite.

7. Enter default tag’s value into Initial PV.

8. In the Input/Output section bind tag to the server’s tag. In
the PV Input server choose server you want to bind. Then
click «...» button to set up server’s tag settings or enter it
into the PV Input tag.

9. If the output server’s tag differs from the input server’s tag

check Output differs from input and select PV Qutput
server and enter PV Output tag.

v Tags

‘General‘ Scaling | Alarms | History

Group: Bits

Name: Bit00

Data type: Boolean

Access mode: ReadWrite

Initial PV: false

Input/Output

PV Input server: OmronServer1

PV Input tag: D00000.0 [a=0;ad=0;dt=1;b=0 | ...

Output differs from Input:

OK

New Screen W B¢ false
New Server S s falso
FIl Copy Tag 0.0
New Script ~S
Fll Delete Tag 0.0
MET il Fll Tag properties 0o
., _ Fi 0.0
New User ~T New Tags Group
in 0
New Object ~0 Add to Group
. 1 t
Run simulation ~F11 References to
Export tags
Import tags
Properties P Export tags to Excel
Import tags from Excel
[)] Tag properties

Cancel

Depending on the type of PV Input server or PV OQutput server you’ll see different server’s tag

(pointer) settings window:

Modbus tag settings S "lﬂ“‘-‘
You’ll see the following window: o ——
. Point type: Holding Registers N
1. Enter SlavelID of the modbus device. — .
2. Choose Point type of the register. e Unsigned Integer(16bit) B
3. Write offset of the register into Offset. Bit:
4. Choose Data type of the modbus tag.
5. Choose number of Bit if the point type is boolean.

After clicking OK you’ll get pointer settings in PV Input
tag encoded in String like:

s=1;pt=3;0=0;dt=2;
Where: s - SlavelD, pt - Point type, o - Offset, dt - Data type

OK

Cancel

18

Siemens tag settings
You’ll see the following window:

1. Choose Storage area of the siemens tag: 1,Q,M or
DB.

2. Write DB number in the DBNe field if you choose DB

storage area.
3. Choose Data type of the siemens tag.
. Enter byte number of the area into ByteNe field.
5. Choose number of Bit if the data type is Bit.

DBN2:
Data type:
ByteN2:
Bit:

Storage area:

Pointer settings

Bit

0

Bit 0

OK

After clicking OK you’ll get pointer settings in PV Input tag encoded in String like:

10.0 [a=0;db=0;dt=0;bn=0;b=0;]

Where: a - Storage area, db - DBNe, dt - Data type, bn - ByteNe, b-Bit.

(I0.0 - its just for Siemens users and it’s not used in encoding)

AllenBradley tag settings

You’ll see the following window:
1. Enter Tag name.
2. Choose Data type of the allen bradley tag.

After clicking OK you’ll get pointer settings in PV
Input tag encoded in String like:
type=0;name=Tag

Where: type - Data type, name - Tag name

Micrologix tag settings

If you choose Micrologix or SLC500 controller type in
the Allen Bradley server settings you’ll see the
following window:

Choose File type of the server’s tag.

Write File number in the field.

Enter Element of the servers tag.

Choose Word for some file types.

U

Choose number of Bit.

After clicking OK you’ll get pointer settings in PV
Input tag encoded in String like:

00:0

Where: O - File type, O - File number, 0-Element

Cancel

[] Pointer settings
Tag name:
Data type: BOOL %
OK Cancel

[] Pointer settings
File type: Output(O) v
File number: 0}
Element: 0
Word:
Bit: none v

OK Cancel

19

OPC UA tag settings
After clicking «...» button when you choose OPC UA server you’ll get into the Address Space

window. Browse through the address space by double clicking on the nodes and choose the
tag(node) you need by clicking right button on it and choosing Select menu item on the popup
window.

You’ll get NodeID in PV Input Tag.

MQTT tag settings ° Pointer settings |
You’ll see the following window: 122 |
1. Enter Topic. Qos: | QoS0 -
Choose QoS of the MQTT tag. v/ Retained
JSON path:

2

3. Check Retained if you want to use this property.

4. If MQTT response contains JSON array enter
JSON path to parse the value. For example if
response is: «{foo: bar, lat: 0.23443, long:
12.3453245}» to get long value enter «long» in
the field. If response is not JSON format left field oK Cancel
empty. If response contains multi dimension

JSON format, separate keys by commas without
blank spaces.

After clicking OK you’ll get pointer settings in PV Input tag encoded in String like:
t=SmartHome/tags/cooling;qos=0;r=1;json=
Where: t - Topic, sos - QoS, r-Retained, json - JSON path

[] Pointer settings
Omron tag settings i __
You’ll see the following window: e 0
1. Choose address Area. D_ata e el
2. Enter Address of the tag. o
3. Choose Data type.
4. Choose Bit for Binary data type.

OK Cancel

After clicking OK you’ll get pointer settings in PV Input tag encoded in String like:
D00000 [a=0;ad=0;dt=16;]

Where: a - Area, ad - Address, dt - Data type, b-Bit.

(D000O - its just for Omron users and it’s not used in encoding)

On the Scaling tab of the Tag properties window:

1. Check Enable I/0 scaling if you want to scale a value get from the server.

20

2. Enter minimum server tag’s value into Raw
- ®
value minimum field.

Tag properties

General | Scaling | Alarms | History

3. Enter maximum server tag’s value into Raw
value maximum field.

4. Enter minimum tag’s value in engineer units into
EU value minimum field.

5. Enter maximum tag’s value in engineer units into
EU value maximum field.

6. Write tag’s value offset int EU value offset.

When you get some value from the server application
use this formula:

value = (value-rawmin)*(Ceumax-eumin)/
(rawmax-rawmin)+eumin + offset

v/ Enable 1/0 scaling
Raw value minimum
Raw value maximum
EU value minimum
EU value maximum

EU value offset

0.0
100.0
0.0
100.0

0.0

OK

Cancel

On the Alarms tab of the Tag properties window:

1. Check Enable alarms if you want to use alarms
for this tag.

2. Check HiHi, Hi, Lo, LoLo or Normal if you want to
use the correspondent alarm(event).

3. Write Limit for the correspondent alarm(event). If the
value of the tag plus Deadband will be more than HiHi
or Hi limit the correspondent alarm will be called and be
written into Event database. If the value of the tag minus
Deadband will be less than LoLo or Lo limit the
correspondent alarm will be raised and be written into
Event database.

4. Enter Priority for the correspondent alarm(event). If the
priority of the alarm(event) is less than value of
Notifications(Priority<) you set in the project properties
the notification dialog will be called.

5. Enter Message for the correspondent alarm(event).

General | Scaling | Alarms | History

v/| Enable alarms
V| HiHi Limit
Message
v/ Hi
Message
V| Lo

Message

Limit
Limit
v/ LoLo Limit
Message
V] Normal

Message

Deadband | 0.0

Tag properties

0.0

0.0

0.0

Enable OPC UA event

OK

Priority

Priority

Priority

Priority

Priority

50

500

900

Cancel

6. Check Enable OPC UA event if you bind this tag to the OPC UA server tag(node) and you

want to use EventNotifier of this tag(node).

On the History tab of the Tag properties window:

1. Check Enable history if you want to storage values of
this tag.
Enter Storage period(ms).

3. Check Store in DB if you want to store data in history
database.

On the Script tab of the Tag properties window:

General | Scaling | Alarms | History
[V Enable history

Storage period(ms)

Store in DB

Tag properties

1000

21

1. Check Enable script if you want to use script bind to this

s | @) 7 7 7 Tag properties)
tag S Value' General | Scaling | Alarms | History ‘ Script‘
2. Choose Script you want to bind to this tag’s value. v/ Enable script
. Script Script4 v

3. Enter Value you want to compare with current value. . —
4. Choose Type of the compare operation. Type Tag.PV>Value -
5. Enter Deadband for the value. o e

New Tag

Cepy Tag

-, Copy tag

7 Setecable To copy tag:

Tag properties

1. Right click on the tag you want to

weee 0 copy and choose Copy tag item.

o Delete tag

Export tags to Excel oK Cancel

mewsnses | 10 delete tag:

1. Right click on the tag you want to
delete and choose Delete tag item.
Delete all tags
To delete all tags:
1. Right click on any tag and choose Delete all tags item.
Set editable

To edit tag in the table:
1. Right click on any tag and choose Set editable item.

Edit tag properties

To edit tag properties:
1. Right click on the script you want to edit and choose Tag properties item.
or
2. Double click on the tag you want to edit.

New group tags

Create new group of the tags.

Add to group

Add this tag to one of the available group.
Reference to
To find objects and scripts that use this tag:

1. Right click on any tag and choose Reference to item. And choose where you want to find
this tag in objects or in the scripts.
Export all tags
To export all tags:

1. Right click on the tags window and choose Export all tags item.

2. Now select the location and click the button Save (TeslaSCADA tags extension .tsp2tags).
Export tags for OPC UA
If you want to use this project like OPC UA server you can export tags for OPC UA client. The item
will be created with OPC UA nodes in PV input source of the tag.

22

Import tags
To import tags:
1. Right click on the tags window and choose Import tags item.
2. Now select the tags file and click Open (TeslaSCADA screen extension .tsp2tags).

Export tags to Excel
To export tags to Excel:

1. Right click on the tags window and choose Export tags to Excel item.

2. Now select the location and click the button Save (Tags will be saved in Excel file).

Import tags from Excel
To import tags from Excel:
1. Right click on the tags window and choose Import tags from Excel item.

2. Now select the Excel file with tags and click Open.

23

Design script

To start designing the script you want, you should double click on it or click right button on the

Project window->Scripts and choose Open script. For creating scripts you should use FBD

objects.

Create script object

Add new object on the screen you can in this way: click right button on the New Object
Canvas and choose New object item Duplicate

Erase

You’ll see the Add script object window:

[) (] Add script object

[Select library which object you want to use
v Libraries
Input/Output % anor |, 5 BANP i e in your project (all libraries and their
prr— merse s Loaeion Lomea XoR objects described below). Select object you

Compare

can in several ways:
1.By double clicking on the object.

Select

2. By clicking on the object (select rectangle
will appear) and then clicking OK button.
3.By clicking right button and choosing
Select item.

Add script object window will disappear

and you can select the location on the screen

oK Cancel where you want to place an object.

Connect script objects
To connect two objects, click the end of the first (the end to paint

over) and click start the second. This will bring up a line D‘E'

connection.

Bind script object to the tag
You can bind Input/Output script objects to the tag. To do this click on Input/

[] Choose Input/Output tag

e -
ancel

Output script object, dialog will appear. Select tag you want to bind.
Enter value to the value script object e

You can enter value to value script objects. To do this click on value script
object, dialog will appear. Enter value you want to use with this object.

Duplicate script object
You can duplicate script object. Right click on the object you want to duplicate and select Duplicate
menu item.

Erase script object
You can erase script object. Right click on the object you want to erase and select Erase menu item.

Erase connection line
You can erase connection line. Right click on the line you want to erase and select Erase menu

item.

24

Script objects of FBD language

Below description of script libraries and object.

Input/Output library

Input tag - this script object used to bind input tag to the script.

Output tag - this script object used to bind output tag to the script.

Value - this script object used to bind input constant value to the script.

Logical library

Inverse - this script object used to inverse input boolean value (Output = ! Input).

Logical AND - this script object used to logical operation AND for input boolean values (Output =
Input & Input2).

Logical OR - this script object used to logical operation OR for input boolean values (Output =
Input Il Input2).

Logical XOR - this script object used to logical operation XOR for input boolean values (Output =
Input XOR Input2).

Bitmap operations library

Inverse - this script object used to inverse input integer value (Output = ~ Input).

Bitmap AND - this script object used to logical operation AND for input integer values (Output =
Input & Input2).

Bitmap OR - this script object used to logical operation OR for input integer values (Output =
Input Il Input2).

Bitmap XOR - this script object used to logical operation XOR for input integer values (Output =
Input XOR Input2).

Left Shift - this script object used to left shift bits of input value (Output = Input << Ne of bits).
Right Shift - this script object used to right shift bits of input value (Output = Input >> Ne of bits).
Bytes to Short - this script object used to pack 2 bytes in the short (Output = Input<<8+Input2).
Short to Bytes - this script object used to unpack short value in 2 bytes (Output = Input[Input2]).
Shorts to Int - this script object used to pack 2 shorts in the int (Output = Input<<16+Input2).

Int to Shorts - this script object used to unpack int value in 2 shorts (Output = Input[Input2]).
Read bit - this script object used to read bit of the input value (Output = Input[Input2]).

Set bit - this script object used to set bit of the input value (Output = Input | 1<<Input2).

Reset bit - this script object used to reset bit of the input value (Output = Input & ~(1<<Input2)).
Arithmetic library

Addition - this script object used to arithmetic operation addition for input values (Output = Input +
Input2).

Subtraction - this script object used to arithmetic operation subtraction for input values (Output =
Input - Input2).

Multiplication - this script object used to arithmetic operation multiplication for input values
(Output = Input * Input2).

Division- this script object used to arithmetic operation division for input values (Output = Input /
Input2).

Modulo - this script object used to arithmetic operation modulo for input values (Output = Input %
Input2).

25

Power - this script object used to arithmetic operation power for input values (Output =
InputMnput2).

ABS - this script object used to arithmetic operation absolute for input value (Output = lInputl).
Sign - this script object used to arithmetic operation sign for input value (Output = -Input).

Int - this script object used to arithmetic operation for getting integer part of the input value (Output
= int(Input)).

Sqrt - this script object used to arithmetic operation sqrt of the input value (Output =
Math.Sqrt(Input)).

Ln- this script object used to arithmetic operation In (natural logarithm) of the input value (Output
= Ln(Input)).

Log- this script object used to arithmetic operation log (logarithm) of the input value (Output =
LogmpueInput).

Compare library

Equal - this script object used to comparison operation equal for input values (Output = Input ==
Input2).

Not Equal - this script object used to comparison operation not equal for input values (Output =
Input != Input2).

Greater - this script object used to compare operation greater for input values (Output = Input >
Input2).

Less - this script object used to compare operation less for input values (Output = Input < Input2).
Equal or Greater - this script object used to compare operation equal or greater for input values
(Output = Input >= Input2).

Equal or Less - this script object used to compare operation equal or less for input values (Output =
Input <= Input2).

Select library

Selectable enable - this script object used to select value form Input2 if Inputl is true (IF
Input==true THEN Output=Input2).

Selectable negate - this script object used to select value form Input2 if Inputl is false (IF
Input==false THEN Output=Input2).

Minimum - this script object used to select minimum value of Input2 and Inputl
(Output=Min(Input, Input2)).

Maximum - this script object used to select maximum value of Input2 and Inputl
(Output=Max(Input, Input2)).

Arrays library

Index read - this script object used to select array’s element. Inputl is an array. Input? is index of
element (Output = Inputl[Input2]).

Index write - this script object used to change array’s element. Inputl is an element. Input2 is index
of element (Output[Input2] = Inputl).

Triggers/Counters library

Rising edge trigger- this script object used to generate rising impulse duration PV ms when Inputl
get TRUE from FALSE.

Falling edge trigger- this script object used to generate rising impulse duration PV ms when Inputl
get FALSE from TRUE.

26

RS trigger- this script object used to imitate RS trigger.
Timer ON- this script object used for delay timer for the duration PV when Inputl get TRUE from
FALSE.
Timer OFF- this script object used for delay timer for the duration PV when Inputl get FALSE
from TRUE.
Counter- this script object used to count impulses of boolean value in Inputl. Counter resets when
Output become equal PV.
Counter Down- this script object used to count impulses of boolean value in Inputl. Counter starts
from value PV. Counter resets when Output become equal 0.
Multivibrator - this script imitates impulse generator with PV period. It starts when IN1 changed
from false to true.
Trigonometric library
Degrees to radians - this script object used to convert degrees to radians.
Radians to degrees - this script object used to convert radians to degrees.
Sine - this script object used to calculate sin of Input value. (Output = sin(Input)).
Cosine - this script object used to calculate cos of Input value. (Output = cos(Input)).
Tangent - this script object used to calculate tag of Input value. (Output = tag(Input)).
Arc Sine - this script object used to calculate arc sin of Input value. (Output = arc sin(Input)).
Arc Cosine - this script object used to calculate arc cos of Input value. (Output = arc cos(Input)).
Arc Tangent - this script object used to calculate arc tag of Input value. (Output = arc tag(Input)).
Hex operations library
Hex to Integer - this script object converts hex value into integer.
Integer to Hex - this script object converts integer value into hex.
Call screen library
Call screen - this script object used to call screen when Input’s value turns from false to true.
Call popup - this script object used to call popup screen when Input’s value turns from false to true.
Strings library
Equal Strings - this script object compare two strings in Inputs and if their are equal it sets true into
Output value.
String to Double - this script object converts Input’s string value into Output’s double value.
Double to String - this script object converts Input’s double value into Output’s string value.
Strings concat - this script object concatenate Input’s strings values into Output’s string value.
(Output = Inputl+Input2).
String cut end - this script object cuts end of Input’s string value by the Ne of characters and place
result into Output’s string value.
String cut begin - this script object cuts begin of Input’s string value by the Ne of characters and
place result into Output’s string value.
Date and time library
Current date and time - this script object used to get date and time components depending on
Input value:
0 - get seconds.
1 - get minutes.
2 - get hour of the day considering AM/PM.

27

3 - get hour of the day.

4 - get day of the week (1-Sunday, 2-Monday...).
5 - get day of month.

6 - get month (0 - January, 1 - February...).

7 - get year.

8 - get minutes of the day (hour*60 + minutes).

Servers library

IP or URI address - this script object used to change server’s IP or URI address when Input’s value

changed.

Reconnect - this script object used to reconnect server when Input’s value turns from false to true.

Recipes library

Select recipe - this script object used to choose recipe row. Input2 is an input that contains name of

the recipe. Inputl is number of the row (starting from 1). Output = true if recipe row is chosen.

Base64 library

Decode Base64 to Array - this script object used to decode Base64 string to byte array. Input
contains base64 encoded string. In Output will be decoded byte array.

Encode Array to Base64 - this script object used to encode byte array to Base64 string. Input
contains byte array. In Output will be encoded Base64 string.

28

Description of ST(Structured text) language
When you choose ST(Structured text) language in

script properties and open this script you’ll see two
windows like in the picture. Top window is a Code

area and below window is a Debug(or log) area.
You can enter your script program in the top window
and compile this code by clicking Run button on the
Tool bar. All debug and log information you can see
in the below window. Later in this chapter we will

describe the rules of the ST language.

What is Structured Text
Programming?

Structured Text for TeslaSCADA?2 is different from PLC programming language defined
by PLCOpen in IEC 61131-3. The programming language is text-based, compared to the graphics-
based Function Block Diagram.

If you are already familiar with high-level programming languages like Java, PHP, Python
and C, Structured Text will seem familiar to you. The syntax of Structured Text is developed to look
like the syntax of a high-level programming language

with loops, variables, conditions and operators. 1 int a 5;

Before you read this tutorial I recommend that Zint b = 7;
you take a brief look at this TeslaSCADA?2 program “ i;t (Z:_';b) (
written in Structured Text. Try to see if you can c=a+b;
understand the function of this program. Does ; print(c);
Structured Text look familiar to you? Llse (

- C=a-=D;

Starting with the Syntax of print(c);

Structured Text
The syntax of a programming language is the

definition of how it is written. To be more precise, what symbols is used to give the language its
form and meaning.As you can see in the example, Structured Text is full of colons, semicolons and
other symbols. All these symbols has a meaning and is used to represent something. Some of them
are operators, some are functions, statements or variables.All the details of the syntax will be
explained as you move through this tutorial. But there are some general rules for the syntax of
Structured Text you should know about. You don’t have to memorize all the syntax rules for now, as
you will when you get your hands into the programming:
All statements are divided by semicolons
Structured Text consists of statements and semicolons to separate them.
The language is case-sensitive
It is good practice to use upper- and lowercase for readability.
Spaces have no function
But they should be used for readability.

29

http://www.plcopen.org/pages/tc1_standards/iec61131-3/
https://www.plcacademy.com/function-block-diagram-programming/
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Syntax_%28programming_languages%29
https://teamtreehouse.com/forum/memorising-syntax-and-other-programming-stuff
https://en.wikipedia.org/wiki/Readability

What’s really important to understand here is that, when you write a TeslaSCADA?2 program in IDE
in Structured Text, your computer will translate that to a language the TeslaSCADA2 Runtime can
understand. Before you use project that contains the Structured Text TeslaSCADA?2 program to your
TeslaSCADA?2 Runtime, the IDE will compile your program. This means that it will translate the
code to a sort of machine code which can be executed by the TeslaSCADA2 Runtime.

The compiler uses the syntax of the programming language to understand your program.

For example: Each time the compiler sees a semicolon, it will know that the end of the current
statement is reached. The compiler will read everything until it reaches a semicolon, and then
execute that statement.

Comment Syntax

In textual programming languages you have the ability to write text that doesn’t get executed. This
feature is used to make comments in your code.Comments are good, and as a beginner you should
always comment your code. It makes it easier to understand your code later. In Structured Text you
can make either one line comments or multiple line comments.

Single line comment:

Multiple line comment:

Making Statements with Structured Text
So, Structured Text consists of statements. But what is statements?A statement is you telling the

TeslaSCADA?2 what to do. Let’s take the first statement as an example:

bool x;

The compiler will read this as one statement, because when it reaches the semicolon, it knows that
this is the end of that statement. Remember, statements are separated by semicolons. That’s the
main syntax rule of this language. In this statement you are telling the TeslaSCADAZ2 to create a
variable called X and that variable should be a BOOL type. By default value of the variable is false.

30

https://en.wikipedia.org/wiki/Compiler

Types in Structured Text

Data types of Structured Text are similar to data types of TeslaSCADAZ2:

Data Type Format

bool Boolean

byte Byte

short Short

int Integer

long Long Integer
float Float

double Double

string Character string
array Array

Examples of variable initialisation:
bool x=false;

byte b =2;

short s = 45;

int i =-4546;

long 1 =394394832;

float f=1.23;

double d = -545.64;

string str = “Hello”;

byte bytes[10] =[1,2,3,4,5,6,7,8,9,10];

Range
False/True

-128 ... 127
-32768 ... 32767
-2A31 ... 2A31-1
-2A63 ... 2763-1

+3.40282347E+38F

+1.79769313E+308

“My string”

byte[], short[], int[], float[]

31

Operators and Expressions in STL
The next thing you should know about is operators. Operators are used to manipulate data and is a

part of almost any programming language. This leads us to the second thing you should know about
— expressions.Just like operators, expressions are a crucial part of programming languages.

An expression is a construct that, when evaluated, yields a value.This means that when the compiler
compiles an expression, it will evaluate the expression and replace the statement with the result.
Take this example with the two variables A and B.A contains the value 10 and B contains 8.

A+B

The result of this expression is 18. So instead of A+B, the compiler will put in the value 18.

An expression are composed of operators and operands.So what are operators and operands?

Since, you just saw an example of an expression, you just saw both an operator and two operands. A
and B are both operands and the + is an operator. Remember that operators are used to manipulate
data. That is exactly what the + is doing. It is taking the value of the variable A and adding it to the
value in B. The + is also called the addition operator because the operation is addition.

32

Operators
There are several operators available in Structured Text language:

Operation Symbol Precedence
Parenthesization (expression) Highest
Negation -

Complement !

Multiply *

Divide /

Modulo %

Add +

Subtract -

Left Shift <<

Right Shift >>

Comparison <, >, <=, >====

Boolean AND &

Boolean OR I Lowest
Boolean XOR A

All the operators in the table above are sorted after precedence. This is also called order of
operations, and you may know about if from mathematics.The order of operations is the order in
which the operations are executed or calculated. Just take a look at this expression:

A+B*C

How will this expression be evaluated by the compiler?

There are two operations left: multiply and addition. But since multiply has a higher precedence,
that will be the first to be evaluated. B * C comes first and then the result is added to A.

Every time an expression is evaluated, the evaluation follows the order of precedence as in the table
above.

33

https://en.wikipedia.org/wiki/Order_of_operations
https://en.wikipedia.org/wiki/Order_of_operations

4 Types of Operators, 4 Types of Expressions
The operators used for expressions in Structured Text can be divided into four groups. Each group

of operators will have its specific function and will yield a specific data type.

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Bitwise Operators

Arithmetic Operators

All the arithmetic operators are often just called mathematical operators because they represent
math. The result will always be the mathematical result of the expression.

e + (add)

o — (subtract/negate)

e * (multiply)

e / (divide)

e 9% (modulo divide)

Example:

15 % 4

Result:

3

Relational Operators

To compare or find a relation between two values you can use one of the relational operators. They
are used for comparison and the result will be a boolean value (BOOL type), either TRUE or
FALSE.

e == (equal)

< (less than)

<= (less than or equal)

> (greater than)

>= (greater than or equal)

!= (not equal)

Example:
TEMPERATURE = 93.9;
TEMPERATURE >= 100.0
Result:

false

34

Logical Operators
If you want to compare boolean values (BOOL) and make some logic out of it, you have to

use logical operators. These operators also yields a boolean value of TRUE or FALSE as a result of
the expression.

o &&

ol

o N

o !

Example:

limitswitch1 = true;

limitswitch2 = false;

limitswitch1 Il limitswitch2

Result:

true

Bitwise Operators

The last group of operators are called bitwise operators because the operations are performed
bitwise. It simply means that a logic operation is performed for each bit of two numbers. The result
is a new number — the total result of the bitwise operations.

e &

o |

o A

o <<

o >>

Example:

15&8

Result:

8

Since this operation is bitwise the calculation will be per bit. So to understand what’s going on here,
you have to convert the numbers to binary values:

15=1111 8 = 1000

Now each bit in the number 1111 (15) can be used in a logical operation with the other number
1000 (8): 1111 AND 1000

Bit number 1111 (15) 1000 (8) Result
0 1 0 0
1 1 0 0
2 1 0 0
3 1 1 1

35

Operators and Statements
So, in the previous section you learned that expressions evaluate. Meaning that all

expressions will yield the result and the compiler will replace the expression with the result. But
what if you want the TeslaSCADA?2 (compiler) not to evaluate something, but to DO something?
Statements are the answer. Let’s take a look at the actions or statements that you can make in
Structured Text.

Assignment Statement and Operator

There are several statements available in Structured Text. All of them represent an action or

a condition. Beginning with actions, the most fundamental statement in Structured Text is

the assignment statement. Here’s how an assignment statement looks like:

A=B;

What does this statement tell the compiler to do? To take the value of the variable B and put it in the
variable A. The TeslaSCADAZ? is assigning a value to a variable. Here’s an even simpler example:
A=10;

This statement will take the value 10 and put it into the variable A. Or said in another way — the
variable A will be assigned the value 10.Since the value of A is now 10, we can make another
statement, but this time with an expression:

B=A+2;

When this line of code is compiled, the expression A + 2 will be evaluated to 12. The compiler will
replace the expression with the result 12. The statement will now look like this to the compiler:
B=12;

What will happen now, is that the compiler will assign the value 12 to the variable B.

The last thing is that the = symbol is called the assignment operator.

You can have all sorts of expressions in your assignment statements, from simple values like
numbers to variables and functions. Because all expressions will be evaluated first, and then, the
result of that evaluation will be used in the assignment statement.

36

Conditional Statements
A TeslaSCADA?2 program is a piece of logic and therefore has to make some decisions.

So in your TeslaSCADA?2 program you need a way to make decisions. This brings us to conditional
statements. Conditional statements are used for exactly that: To make decisions.
There are one way of doing conditional statements in Structured Text: IF statement.
IF Statements
IF statements are decisions with conditions. There’s a special syntax for IF statements. This means,
that you have to write it in a certain way for the compiler to understand it. Because just like
semicolons are used to end statements, there are special keywords to make an IF statement.
Here’s how the syntax for IF statements looks like in STL for TeslaSCADA @:
if (boolean expression) {
<statement>;
)
else if (boolean expression){
<statement>;
¥
else {
<statement>;

}

Statement starts with keyword IF. Then parentheses. Between those two brackets are the condition,
which is an expression. But not just any expression. A boolean expression.
Boolean and Numeric Expressions
You can divide expressions into two groups depending on what they yield.
Boolean expressions evaluates to a BOOL type value, TRUE or FALSE.
Here’s an example of a boolean expression:
1==1
This expression will evaluate to or yield TRUE. A boolean expression could also look like this:
1>2
But this time the boolean expression will evaluate to FALSE, since 1 is not larger than 2.
Numeric expressions evaluates to an integer or a floating point number.
A numeric expression could look as simple as this one:
132 +19.8
This expression will evaluate to the floating point number 33.0, and therefore is a numeric
expression.
Boolean expressions are used in IF statements as conditions.
IF the boolean expression evaluates to TRUE, then the following statements will be executed.
The TeslaSCADA?2 will only execute the statements after the open bracket {, if the expression
evaluates to TRUE. This is illustrated by the following example:
A=0;
IF(A==0) {
B=0;
h

37

Line number 3 will only be executed if A is equal to 0. In this case it will. A O is assigned to the
variable A in a statement right before the IF statement.
For now, you’ve seen a simple IF statement, where statements are only executed if an expression is
TRUE. If that expression evaluates to FALSE the statements will simply not be executed. What to
do if you want to use multiple conditions? Just like most other programming languages you can use
the ELSE IF and ELSE keywords for multiple conditions in the same IF statement.
Both ELSE IF and ELSE are optional in IF statements, but this is how the syntax looks like:
if (boolean expression) {

<statement>;
}
else if (boolean expression) {

<statement>;
¥
else{

<statement>;
¥
If the boolean expression on line 1 is FALSE, the statements below will simply not be executed.
Instead the compiler will check the boolean expression after the ELSE IF keyword.Here it works
just like with the IF keyword: If the boolean expression after the keyword is true, the following
statements will be executed.At last is the ELSE keyword. It works as a default option for your IF
statement. If all the IF and ELSE IF boolean expressions are evaluated to FALSE, the statements
after the ELSE keyword will be executed.
Combining Operators for Advanced Conditions
Beside making multiple conditions you can also expand your conditions to include multiple
variables. You can combine multiple expressions, typically done with a logical operator, to get a
larger expression.
What if you want not just 1 but 2 inputs to be TRUE before an output is set. The expression would
look like this:
if INPUT1 & INPUT2) {

OUTPUTI1 = TRUE;

¥
Now the expression will evaluate to TRUE, only if INPUT1 and INPUT2 is TRUE.

38

Iteration with Repeating Loops
Probably one of the most powerful features in Structured Text is the ability to make loops that

repeat lines of code. In relation to TeslaSCADA?2 programming loops can be used for many
different purposes. You might have a function or a set of statements that you want to execute a
certain amount of times or until something stops the loop.
In Structured Text for TeslaSCADA?2 you will find 2 different types of repeating loops:
« FOR
« WHILE
Common for all the types of loops is that they have a condition for either repeating or stopping the
loop. The condition in FOR and WHILE loops decides whether the loop should repeat or not.
FOR Loops

The first loop is the FOR loop and is used to repeat a specific number of times.This is the
syntax of FOR loops in Structured Text for TeslaSCADAZ2:
for (count = initial_value; condition; increment){

<statement>;
}
Keyword that starts the FOR loop statement.
count = initial_value
This assignment operation is where you set the initial value you want to count from. Count is the
variable name and initial_value is the value you want to start counting from.
Semicolon before condition statement.
condition of the loop’s continuation.
Semicolon before incremental statement.
increment statement. Usually used to increment initial value - count in this case.
Then you place statements between {} that will execute during loops.
WHILE Loops
The while loop is a little different from the FOR loop, because it is used to repeat the loop as long
as some conditions are TRUE. A WHILE loop will repeat as long as a boolean expression evaluates
to TRUE.Here’s the syntax of WHILE loops:
WHILE (boolean expression){
<statement>;

)
Between the parentheses are the boolean expression. If that boolean expression evaluates to TRUE,
all the statements between braces {}will be executed. When } is reached, the boolean expression
will be evaluated again. This will happen over and over again until the expression doesn’t evaluate
to TRUE. But to make the loop stop at one point, you have to change a value in the boolean
expression. Only in that way can the boolean expression go from TRUE to FALSE.
Here’s an example of a WHILE loop in Structured Text:

39

counter = 0;
while (counter < 10){

counter = counter + 1;

machine_status = counter * 10;
}
If you look at the third line you will see how the loop will eventually stop repeating. The boolean
expression uses the counter variable and checks if its value is less than 10. But since the value of
counter is set to O right before the WHILE loop, the boolean expression will be TRUE unless
counter is changed. That is what’s happening in line 3. This is the first statement in the WHILE
loop, and with the other statements, are executed each time the loop repeats. In the third line the
value of the counter variable is increased by 1. You can say that the incremental value is 1.
In the example above, the loop will repeat 10 times. When the value of count reaches 10, the
boolean expression will be evaluated to FALSE (because 10 is not less than 10) and the loop will
stop.
You can also use the BREAK keyword in the WHILE loop to stop repeating the loop before the
boolean expression is FALSE. The syntax is an IF statement with the BREAK keyword in. Place it
anywhere between braces {}.
if (boolean expression) {

break;

40

User-defined functions
Also you can use user-defined functions in Structured Text language for TeslaSCADA?2. You can

find example below:
function fun(a,b){
int c;
if (a>b){

c=a+b;

h

else{
c=b-a;

}
return c;

h
intd = fun(13,17);
print(d);

In this example user function starts with key word function. Then name of the function. Then in
parentheses arguments are listed. Inside braces {} statements of the function. User-defined function
must be announced before main program. In this example program text of function fun is in the
beginning. And only after statements of fun function, text of the main program.

Results of this script will be 4 in the log window.

Using Tags in Structured Text
Of course for our purposes we need to use Tags in our scripts written in Structured Text language.
How to do that? You can include Tags in your project’s scripts by using keyword Tags. Then type
dot (.) and name of your Tag. For possibility to compile this code the name of the tag should contain
only English letters without whitespaces and any signs.

Example:

int var = 10;

Tags. Tagl = var;

In this example value of the variable var will be assigned to Tag with name Tag]1.

Other Example:
float f = Tags.Floatl;

In this example value of the Tag with name Floatl will be assigned to variable f.

Using Object property fields in Structured Text
You can include Object property fields in your project’s scripts by using keyword Objects. Then
type dot (.), name of your Object, again type dot (.) and name of property field. For possibility to
compile this code the name of the object and object property fields should contain only English
letters without whitespaces and any signs.

Example:
int width = 100;

= var;
In this example value of the variable width will be assigned to Object with name Rectangle and
field property name width. Name of the property fields you can find out in parentheses of object and
property descriptions above.

41

Using Server parameter fields in Structured Text
You can include Server parameter fields in your project’s scripts by using keyword Servers. Then

type dot (.), name of your Server, again type dot (.) and name of parameter field. For possibility to
compile this code the name of the server and server parameter fields should contain only English
letters without whitespaces and any signs.

Example:

Servers.ModbusServer.ipaddress = “192.168.0.102”;

In this example value “192.168.0.102” will be assigned to the server with name ModbusServer and
field property name ipaddress. Name of the property fields you can find out in parentheses of server
and parameter descriptions above. Also for parameters are written in descriptions you can use:
lostconnection, connect and connected.

Using User parameter fields in Structured Text
You can include User parameter fields in your project’s scripts by using keyword Users. Then type
dot (.), name of your User, again type dot (.) and name of parameter field. For possibility to compile
this code the name of the user and user parameter fields should contain only English letters without
whitespaces and any signs.
Example:

= true;
In this example value true will be assigned to the user with name Operator and field property name
controlfunctions. Name of the property fields you can find out in parentheses of user and parameter
descriptions above.

Embedded functions
In the Structured Text language for TeslaSCADA?2 there are number of embedded functions:

print(Input) - print input in the log.

sqrt(Input) - arithmetic operation square root of the input value.

pow(Inputl, Input2) - arithmetic operation power for input values. output = Input1Input2.
log(Inputl, Input2) - arithmetic operation logarithm of the input value (Output = LogmpucInput).
In(Inputl) - arithmetic operation In (natural logarithm) of the input value (Output = Ln(Input)).
bytestoshort(Inputl, Input2) - used to pack 2 bytes in the short (Output = Input<<8+Input2).
shorttobyte(Inputl, Input2)- used to unpack short value in 2 bytes (Output = Input[Input2]).
shortstoint(Inputl, Input2) - used to pack 2 shorts in the int (Output = Input<<16+Input2).
inttoshort(Inputl,Input2) - used to unpack int value in 2 shorts (Output = Input[Input2]).
readbit(Inputl, Input2) - used to read bit of the input value (Output = Input[Input2]).
setbit(Inputl, Input2)- used to set bit of the input value (Output = Input | 1<<Input2).
resetbit(Inputl Input2) - used to reset bit of the input value (Output = Input & ~(1<<Input2)).
min(Inputl, Input2) - used to select minimum value of Input2 and Inputl (Output=Min(Input,
Input2)).

max(Inputl, Input2) - used to select maximum value of Input2 and Inputl (Output=Max(Input,
Input2)).

abs(Input) - used to arithmetic operation absolute for input value (Output = [Inputl).
sign(Input) - used to arithmetic operation sign for input value (Output = -Input).

42

int(Input) - used to arithmetic operation for getting integer part of the input value (Output =
int(Input)).

toradians(Input) - used to convert degrees to radians.

todegrees(Input) - used to convert radians to degrees.

sin(Input) - used to calculate sin of Input value. (Output = sin(Input)).

cos(Input) - used to calculate cos of Input value. (Output = cos(Input)).

tan(Input)- used to calculate tag of Input value. (Output = tag(Input)).

asin(Input) - used to calculate arc sin of Input value. (Output = arc sin(Input)).

acos(Input) - used to calculate arc cos of Input value. (Output = arc cos(Input)).

atan(Input)- used to calculate arc tag of Input value. (Output = arc tag(Input)).

hextoint(Input) - converts hex value into integer.

inttohex(Input) - converts integer value into hex.

stringsequals(Inputl, Input) - compare two strings in Inputs and if there are equals it returns true.
stringtodouble(Input) - converts Input’s string value into double value.

doubletostring(Input) -converts Input’s double value into string value.

stringtoint(Input) - converts Input’s string value into integer value.

inttostring(Input) - converts Input’s integer value into string value.

substring(Inputl, Input2, Input3) - used to cut begin and end of Inputl’s string value by the Ne of
characters defined in Input2 and Input3.

base64decode(Input) - used to decode Base64 string to byte array. Input contains base64 encoded
string. In Output will be decoded byte array.

base64encode(Input) - used to encode byte array to Base64 string. Input contains byte array. In
Output will be encoded Base64 string.

datetime(Input) - used to get date and time components depending on Input value:

0 - get seconds.

1 - get minutes.

2 - get hour of the day considering AM/PM.

3 - get hour of the day.

4 - get day of the week (1-Sunday, 2-Monday...).

5 - get day of month.

6 - get month (0 - January, 1 - February...).

7 - get year.

8 - get minutes of the day (hour*60 + minutes).

reconnect(Inputl,Input2) - used to reconnect to server with name from Inputl to IP address from
Input2.

selrecipe(Inputl, Input2) - used to choose recipe row. Input2 is an input that contains name of the
recipe. Inputl is number of the row (starting from 1). Output = true if recipe row is chosen.
sendemail(Inputl, Input2) - send email (if it setup in Project properties) with subject from Inputl
and message from Input2.

createdbsqlliteconnection(Inputl) - used to create create connection to SQLLite database with name
in Inputl.

Example: createdbsqlliteconnection(”filename”);

43

createdbconnection(Inputl, Input2, Input3) - used to create connection to database with name in
Inputl, with username in Input2 and password in Input3.

Example: createdbconnection(*“jdbc:mysql://192.168.0.76:3306/test”, “username”, “password”);
in this example MySQL database is created. (“jdbc:mysql” in the beginning means that MySQL

connection is created).

closedbconnection(Inputl) - used to close database connection with name in Inputl.
Example: closedbconnection(”filename™);

createdbtable(Inputl, Input2, Input3) - used to create table in database with name of database in
Inputl, table name in Input2 and columns in Input3 (columns should be separated by commas,
every table has auto incremented column “_id”)

29 ¢ 29 ¢

Example: createdbtable(““databasename”, “tablename”, “title, parameter1, parameter2”);

insertvaluesintodb(Inputl, Input2, Input3) - used to insert row into database with name of database
in Inputl, table name in Input2 and values in Input3 (values should be separated by commas)
Example: insertvaluesintodb(“databasename”, “tablename”, “Title, 10, 207);

readvaluefromdb(Inputl, Input2, Input3, Input4) - used to read value from database with name of
database in Inputl, table name in Input2, name of the read column in Input3 and condition of read
row in Input4 (if several rows fit to condition first row is read)

99 ¢

Example: readvaluefromdb(“databasename”, “tablename”, “parameter1”,”_id=1");

readvaluefromdbinpos(Inputl, Input2, Input3, Input4, Input5) - used to read value from database
with name of database in Inputl, table name in Input2, name of the read column in Input3,
condition of read row in Input4 and position of the row in Input5.

29 <¢ 99 ¢

Example: readvaluefromdbinpos(*“‘databasename”, “tablename”, “parameter1”, title = Title”, 1);

updatevalueindb(Inputl, Input2, Input3, Input4, Input5) - used to update value in database with
name of database in Inputl, table name in Input2, name of the updated column in Input3, condition
of the updated row in Input4 and updated value in Input5 (if several rows fit to condition all rows

values are changed)
Example: updatevalueindb(“databasename”, “tablename”, “parameter1”,’title = Title”, “10”);

deleterowindb(Inputl, Input2, Input3) - used to delete row(s) in database with name of database in
Inputl, table name in Input2 and condition that should fit the row(s) in Input3.
Example: deleterowindb(*“‘databasename”, “tablename”, “_id=1");

ifttttrigger(Inputl, Input2, Input3, Input4, InputS) - used to send trigger event ifttt.com service.
Inputl contains key; Input2 contains event trigger name; Input3, Input4, Input5 contain valuel,
value2 and value3 for ifttt.com service.

n o<

Example: ifttttrigger("yourkey", “tag_trigger", "Tag is become true", Tags.Tag_2, “current value");

44

http://ifttt.com
http://ifttt.com

httppostcreate(Inputl, Input2) - used to create HTTP post request. Inputl contains name of the
request; Input2 contains url address.
Example: httppostcreate("namehttppost", "https://hooks.zapier.com/hooks/catch/zapkey/otherzap/");

httppostaddvalue(Inputl, Input2, Input3) - used to add value into HTTP post request. Inputl
contains name of the request; Input2 contains name of the value; Input3 contains value.

n <c 29 <<

Example: httppostaddvalue("namehttppost", “valuename”, “value”);

httppostexecute(Inputl) - used to execute HTTP post request. Inputl contains name of the request.
Function returns HTTP post response.
Example: httppostexecute(“‘namehttppost");

httppostgetvalue(Inputl, Input2) - used to get value from the HTTP post response. Inputl contains
response string; Input2 contains name of response value. Function returns value from the HTTP
post response.

29 ¢

Example: httppostgetvalue(“‘{valuename: value}”, “valuename”);
currentdatetime(Inputl) - used to get current date and time in string format. Inputl contains format

of the date and time. Function returns formatted current date and time.
Example: currentdatetime(“YYYY-MM-dd HH:mm:ss");

45

Use Telegram Bot

If you want to get events notification from your project in TeslaSCADA?2 OPC UA server you can

use Telegram messenger for this purpose. To do this you should create Telegram Bot:

1.
2.
3.

NS e

You should have Telegram messenger installed on your device and have an account.
Open in browser https://telegram.me/botfather

Click button «Send message» or «Open in Telegram Web» (you should have login in web
telegram client).

Open your Telegram client and choose BotFather.

Click button Start or type /start.

Enter /newbot.

Enter your bot’s name. The name should be unique. This name you should enter in Bot’s name
field of project properties.

Then you should choose username for your bot.

After entering username you’ll get the telegram bot’s token. Enter it in Bot’s token field of
project properties.

Now you can use telegram bot in getting notification messages from TeslaSCADA2 OPC UA

server. To do this you should find your created bot in your telegram messenger client and click
button Start or enter /start. To stop getting notification messages enter /stop. Also you can get some

information from your project:

1.

Enter /tags to get current values of tags. You’ll get information only from currently monitored
tags (tags that enable history, events and tags of objects that displayed on currently opened
screen).

Enter name of the tag used in your project. You’ll get information about value of this tag and if
tags supports history you’ll get trend for last hour period. You can choose other period by
clicking proper button.

Warning don’t use underline in the name of the tags. Telegram have problems with working with this

kind of names.

46

https://telegram.me/botfather

	About TeslaSCADA OPC UA Server
	Requirements
	Windows
	Mac OS
	Linux

	Installation
	Windows
	Mac OS
	Linux

	Start TeslaSCADA OPC UA Server
	Project
	Create project
	Save project
	Open project
	Edit project properties

	Servers
	Create server
	Modbus RTU server
	Modbus server
	Siemens server
	Allen Bradley server
	OPC UA server
	MQTT server
	Omron server
	Open server properties
	Copy server
	Delete server

	Scripts
	Create script
	Open script
	Copy script
	Delete script
	Edit script properties
	New script group
	Add to group
	Export script
	Import script

	Tags
	Create tag
	Modbus tag settings
	Siemens tag settings
	AllenBradley tag settings
	Micrologix tag settings
	OPC UA tag settings
	MQTT tag settings
	Omron tag settings
	Copy tag
	Delete tag
	Delete all tags
	Set editable
	Edit tag properties
	New group tags
	Add to group
	Reference to
	Export all tags
	Export tags for OPC UA
	Import tags
	Export tags to Excel
	Import tags from Excel

	Design script
	Create script object
	Connect script objects
	Bind script object to the tag
	Enter value to the value script object
	Duplicate script object
	Erase script object
	Erase connection line

	Script objects of FBD language
	Input/Output library
	Logical library
	Bitmap operations library
	Arithmetic library
	Compare library
	Select library
	Arrays library
	Triggers/Counters library
	Trigonometric library
	Hex operations library
	Call screen library
	Strings library
	Date and time library
	Servers library
	Recipes library
	Base64 library

	Description of ST(Structured text) language
	What is Structured Text Programming?
	Starting with the Syntax of Structured Text
	Comment Syntax
	Making Statements with Structured Text
	Types in Structured Text
	Operators and Expressions in STL
	Operators
	4 Types of Operators, 4 Types of Expressions
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Operators and Statements
	Assignment Statement and Operator
	Conditional Statements
	IF Statements
	Boolean and Numeric Expressions
	Iteration with Repeating Loops
	FOR Loops
	WHILE Loops
	User-defined functions
	Using Tags in Structured Text
	Using Object property fields in Structured Text
	Using Server parameter fields in Structured Text
	Using User parameter fields in Structured Text
	Embedded functions

	Use Telegram Bot

